

Date Planned : / /	Daily Tutorial Sheet - 9	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level - 2	Exact Duration :

106. Consider the following ionisation reactions:

I.E. (kJ mol⁻¹)

I.E. (kJ mol⁻¹)

 $A_{(g)} \longrightarrow A_{(g)}^+ + e^-, \quad A_1$

 $B_{(g)} \longrightarrow B_{(g)}^+ + e^-, \quad B_1$

 $B_{(\sigma)}^+ \longrightarrow B_{(\sigma)}^{2+} + e^-, \quad B_2$

 $C_{(g)} \longrightarrow C_{(g)}^+ + e^-, \qquad C_1$

 $C_{(g)}^+ \longrightarrow C_{(g)}^{2+} + e^-, \quad C_2$

 $C_{(g)}^{2+} \longrightarrow C_{(g)}^{3+} + e^-, \quad C_3$

If monovalent positive ion of A, divalent positive ion of B and trivalent positive ion of C have zero electron. Then incorrect order of corresponding I.E. is:

(A) $C_3 > B_2 > A_1$

(B) $B_1 > A_1 > C_1$

(C) $C_3 > C_2 > B_2$

(D) $B_2 > C_3 > A_1$

107. The incorrect statement is:

(A) The second ionisation energy of Se is greater than that of second ionisation energy of As

(B) The first ionisation energy of C^{2+} ion is greater than the first ionization energy of N^{2+} ion

(C) The third ionisation energy of F is greater than the third ionisation energy of O

(D) Halogens have highest I.E. in respective period

108. First three ionisation energies (in kJ/mol) of three representative elements given below:

Element IE_1 IE_2 IE_3 Р 495.8 4562 6910 Q 737.7 1451 7733 R 577.5 1817 2745

Then incorrect option is:

(A) Q : Alkaline earth metal

(B) P: Alkali metals

(C) R: s-block element

(D) They belong to same period

109. Which of the following statement is correct regarding following process?

(i)
$$Cl \xrightarrow{E.A.} Cl^{-}$$

(ii)
$$Cl^- \xrightarrow{I.E.} Cl$$

(iii)
$$Cl \xrightarrow{I.E.} Cl^+$$

(iv)
$$Cl^+ \xrightarrow{I.E.} Cl^{2+}$$

(A)
$$|I.E. \text{ of process (ii)}| = |E.A. \text{ of process (i)}|$$

(C)
$$|I.E. \text{ of process (iv)}| = |E.A. \text{ of process (i)}|$$

110. The correct order of increasing electron affinity of the following elements is:

(A)
$$O < S < F < C1$$

(C)
$$S < O < F < C1$$

(D)
$$S < O < Cl < F$$

111. The second electron gain enthalpies (in kJ mol⁻¹) of oxygen and sulphur respectively are:

- 112. Which of the following statements is correct?
 - The magnitude of the second electron affinity of sulphur is greater than that of oxygen (A)
 - The magnitude of the second electron affinity of sulphur is less than of oxygen (B)
 - (C) The first electron affinities of bromine and iodine are approximately the same
 - (D) The first electron affinity of fluorine is greater than that of chlorine
- 113. Which one of the following statements is incorrect?

- (A) Greater is the nuclear charge, greater is magnitude of electron gain enthalpy
- (B) Nitrogen has almost zero electron affinity
- (C) Electron gain enthalpy decreases from fluorine to iodine in the group
- (D) Chlorine has highest magnitude of electron gain enthalpy
- The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as 114. lacksquareshown below:

$$O(g) + e^{-} \longrightarrow O^{-}(g);$$
 $\Delta H = -142 \text{ kJ mol}^{-1}$

$$\Delta H = -142 \, \text{kJ mol}^{-1}$$

$$O^{-}(g) + e \longrightarrow O^{2-}(g);$$
 $\Delta H = 844 \text{ kJ mol}^{-1}$

$$\Delta H = 844 \text{ kJ mol}^{-1}$$

This is because:

- O ion has comparatively larger size than oxygen atom (A)
- (B) Oxygen has high electron affinity
- O⁻ ion will tend to resist the addition of another electron (C)
- (D) Oxygen is more electronegative
- 115. In which of the following processes energy is absorbed?

 $Cl + e^{-} \longrightarrow Cl^{-}$ (A)

 $O^- + e^- \longrightarrow O^{2-}$ (B)

 $O^{2-} - e^- \longrightarrow O^-$ (C)

 $Na^+ + e^- \longrightarrow Na$ (D)